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Motivation

Practical success of deep neural networks has provoked theoretically surprising

phenomena in statistics. One of these phenomena, that has spurred intense

theoretical research, is “benign overfitting”: deep neural networks seem to

generalize well in over-parametrized regime even though the networks show a

perfect fit to noisy training data.

It is now known that benign overfitting also occurs in various classical statistical

models.

For binary linear classification, previous works have proven that benign

overfitting can occur while assuming that data are generated from subgaussian

mixtures and the results were limited to specific regimes.

Figure 1. Risk curve: Classical regime vs. Over-parametrized regime[1]

non-Subgaussian Mixture Model

We consider binary linear classification, where the p-dimensional feature vectors
xi, i = 1, . . . , n are generated from a mixture of two distributions with mean µ and
−µ with the same covariance matrix Σ.
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Figure 2. non-Subgaussian Mixture

In precise, the model on the feature vector x is induced by the relation

x = yµ + z,

where we assume:

y ∈ {−1, 1} is a random variable satisfying P (y = 1) = P (y = −1) = 1
2
,

z = Σ1/2ξ, where Σ ∈ Rp×p is positive definite and ξ ∈ Rp has independent

entries ξ(k), k = 1, . . . , p that have mean zero and unit variance,

the rth moments of the entries of ξ is bounded byK for some 2 < r ≤ 4.

Noise is introduced to the label y by flipping the sign of y with probability η. We
call y a clean label and ỹ a noisy label.

Draw n samples {(xi, ỹi), i = 1, . . . , n} randomly from the distribution of (x, ỹ).

Max Margin Classifier and Implicit Bias

We consider the maximum margin classifier ŵ, i.e. the solution to the hard-margin
support vector machine:

ŵ = arg min ‖w‖2, subject to 〈w, ỹixi〉 ≥ 1 for all i = 1, 2, . . . , n.

Our analysis on the maximummargin classifier is motivated by implicit bias induced

by gradient descent on the logistic loss:

wt+1 = wt − η∇wL(wt), w0 = 0, t = 0, 1, 2, . . . , (1)

where L(w) is defined by

L(w) := 1
n

n∑
i=1

log{1 + exp(−〈w, ỹixi〉)}.

([4]) showed that, when the dataset is linearly separable (∃w ∈ Rp such that

〈w, yixi〉 > 0 for all i), linear classifier optimized by gradient descent (1) on the
logistic loss with sufficiently small step size η converges in direction to the maxi-
mum margin classifier, that is

lim
t→∞

wt

‖wt‖
= ŵ

‖ŵ‖
.

Theorem 1 (Weak Signal Regime)

For any δ ∈ (0, 1/3], suppose ‖µ‖2 ≥ C
‖Σ1/2µ‖√

δ
and

Tr(Σ) ≥ C max

{
n‖µ‖2,

n2/r+1/2p2/r−1/2‖Σ‖F

δ2/r
,
n4/r+1/2‖Σ‖F

δ2/r
,
n3/2‖Σ1/2µ‖√

δ

}
for a sufficiently large constant C > 1.
Then, for sufficiently large n, with probability at least 1 − 3δ, there exists some
constant c̃ such that

P(x,ỹ) (〈ŵN , ỹx〉 < 0) ≤ η + c̃1

(1 − 2η)2 · ‖Σ‖Tr(Σ)
n‖µ‖4 .

In particular, benign overfitting is guaranteed if Tr(Σ) = o(n‖µ‖4/‖Σ‖).

Theorem 2 (Strong Signal Regime)

For any δ ∈ (0, 1/3], suppose either of the following conditions is met for a
sufficiently large constant C > 1:

‖µ‖2 ≥ C
‖Σ1/2µ‖√

δ
and

C max

{
n2/r+1/2p2/r−1/2‖Σ‖F

δ2/r
,
n4/r+1/2‖Σ‖F

δ2/r
,
n3/2‖Σ1/2µ‖√

δ

}
≤ Tr(Σ) � n‖µ‖2

, or

‖µ‖ ≥ C
√

Tr(Σ) and

Tr(Σ) ≥ C max

{
n2/r+1/2p2/r−1/2‖Σ‖F

δ2/r
,
n4/r+1/2‖Σ‖F

δ2/r
,
n3/2‖Σ1/2µ‖2

δ‖µ‖2

}
.

Then, for sufficiently large n, with probability at leas t 1 − δ, there exists some
constant c such that

P(x,ỹ) (〈ŵN , ỹx〉 < 0) ≤ η + c

(1 − 2η)2 · n‖Σ‖
Tr(Σ)

.

In particular, benign overfitting is guaranteed if Tr(Σ) = ω(n‖Σ‖).

Geometry behind Over-parametrized Regime

Concentration of Training Data

Phase Transition in Direction of Max Margin Classifier
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‖ŵ‖2 ≈



1
n

n∑
i=1
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Figure 3. Strong Signal Regime
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